

STRUCTURAL ANALYSIS OF EARTH-BAG SYSTEMS

ENGS 88 – Honors Thesis

Awais Malik

Faculty Advisor: Professor Vicki V. May

28th May 2013

engineering.dartmouth.edu

AGENDA

- Background
- **Project Goals**
- **Design Methodology**
- Construction
- **Shake Table Testing**
- Observations and Results
- Analysis
- Development of CAD Models
- SolidWorks Simulations
- Conclusions
- Recommendations for Future Work
- Acknowledgements

WHAT IS AN "EARTH-BAG SYSTEM?"

Masonry wall in which the building blocks are earth-bags: sturdy sacks filled with inorganic material (soil).

Reinforcement Techniques:

- Barbed wire is often placed between the courses to improve friction.
- Rebar and twine are hammered in to provide more resistance against overturning.
- Earth-bag walls are finally plastered.

Advantages:

- Inexpensive method to create structures that are both strong and can be quickly built.
- Highly insulated walls with excellent performance in humidity.
- **Eco-friendly!**
- Provides Greater Resistance to *Earthquakes*. (NEED TESTING TO VERIFY THIS CLAIM)

EXAMPLES OF EARTH-BAG SYSTEMS

Historically, earth-bag walls are used as military bunkers and temporary flood controlling dikes.

Earth-bags are also one of the most popular choices for constructing **affordable housing** in developing countries.

THE \$300 HOUSE PROJECT

- Dartmouth's initiative to design and implement affordable housing solutions for Haiti.
- Professor Vicki May is part of a team of designers creating innovative ways to <u>reduce</u> construction <u>costs</u> and make implementation <u>simpler</u>.
- Challenge is to ensure <u>safety</u> of proposed structures.
- Prototype houses are being built in Haiti.
 Team led by Professor Jack Wilson.

THE \$300 HOUSE CHALLENGE

- Blog post in the Harvard Business Review by Professor Vijay Govindarajan and Christian Sarkar challenging designers to create a house for the poor, ideally for \$300. (http://www.300house.com)
- The Design Challenge winners attended a Design Workshop at Dartmouth in Jan 2012.

Patti Stouter, one of the winners of the \$300 House Challenge, is in Earth-bag expert an construction. She gave an ENGS 71 guest lecture emphasizing the need for experimental testing of alternate materials

ENGS 71 GROUP PROJECT

- Professor May presented the \$300 House Challenge to her students in ENGS 71 (Structural Analysis) in Spring 2012.
- I was a member of the group investigating the structural viability of earth-bags.

Background è Project Goals è Design Methodology è Construction è Testing è Results è Analysis è SolidWorks è Conclusions è Future Recommendations

David Connolly

13

ENGS 71 GROUP PROJECT

- Our project goal was to investigate the effectiveness of rebar as an added reinforcement.
- We built two walls scaled down to 40%. One wall had rebar hammered through at regular intervals.
- The test setup included a hydraulic jack connected to a force gage. A ruler was fixed along the jack to measure the displacement.
- We measured the in-plane and out-of-plane displacements of each wall.

ENGS 71 GROUP PROJECT

- In order to compare our experimental results with theoretical predictions, we needed to experimentally determine the Young's Modulus of an earth-bag.
- We used the Instron to compress a single earth-bag. The Force vs. Extension data was used to create a Stress – Strain plot.
- The slope of the linear portion of the graph (Young's modulus) was determined to be approx. 20 MPa.
- The wall was modeled as a simply supported beam with maximum deflection at the center of the wall.
- Our test results were **inconclusive** and our experimental readings did not match our predictions.

WE NEEDED A MORE ACCURATE APPROACH TO TESTING.

PROJECT GOALS

- Build scaled down models of earth-bag corner walls (regular corners, piers and buttresses).
- Test effectiveness of reinforcing corners using a <u>shake table</u>.
- Measure real-time deformations of the walls up to failure and scale back up to determine the deformations of real-life structures.
 Compare max. displacements with theoretical predictions.
- Develop a CAD model of the walls and use SolidWorks Simulation to determine the max. deflections in each type of corner wall.

DESIGN METHODOLOGY

- lan Herrick '13 built a shake table for Professor May during the Summer 2012 term. The weight limit of the table determined the scale factor of the corner walls.
- Max. Weight allowed was approx. 100 lbs. The appropriate scale factor was 1/6th of the real-life wall.
- I built two walls of each corner type. The wall dimensions were 20 x 20 square inches.
- Each bag was 2.5 inches wide, and the length of the bags varied from 5 inches to 15 inches depending on location and type of corner wall.
- 1/8th in. thick 24 x 24 in² sheets of plywood were used as the base of the walls.
- The total weight of each wall was calculated to be between 50 -60 lbs.

Shake Table Specifications:

Total travel: 1.4 inches

Table Dimensions: 24 in. by 24 in.

Total Weight: 325 lbs.

Weight Limit for Testing: 100 lbs. Frequency Range: 0 Hz to 5.8 Hz Motor: Baldor 0.5 HP, 90 V, DC Gear

DESIGN METHODOLOGY

The Curious Case of scaled down models!

- The earth-bags were not the only parts of the model that needed scaling.
- Barbed wire and rebar also needed to be scaled down.
- Required barbed wire diameter = 0.06 in.
- Required rebar diameter = 0.2 in.

Regular Corner

Pier

Buttress

CORNER WALLS CONSTRUCTION

Getting the right soil (Ball Drop Test)

- Wet soil just enough to hold together. Form into 4 cm (1.5 inch) diameter balls.
- Drop them from 1.5 m (5') height onto a hard surface. If they flatten only slightly the soil has too much clay and needs more sand.
- If the balls develop cracks (break into 4 or 5 pieces), the soil is good for earth-bags.
- If the balls shatter, the soil does not have enough clay or moisture.

Plastering (2-layer Process)

- Layer 1: Mixture of Soil and Straw
 - Ø Provides a rough, flat surface on which the plaster can stick and harden easily.
- Layer 2: Plaster of Paris
 - Ø Used a 2:1 ratio of water to plaster.

CORNER WALLS CONSTRUCTION

Shouldn't building a smaller model be easier?

- Answer: Yes and No.
- Less labor-intensive, but more time-intensive.
- The polypropylene woven bags needed to be cut down to size and then stitched to form a bag. (Time sink. The sewing machine kept breaking down!)
- I had to use a tablespoon to fill each bag, and the handle end of a hammer for tamping the soil firmly inside the bags.
 (Another time sink!)
- The 0.06 in. diameter wire had to be cut into barbed pieces using a wire cutter. (Yet another time sink!)
- Took me 6 weeks to build 6 walls!

SHAKE TABLE TESTING

- Testing took place on November 20th, 2012.
- Conducted by Awais Malik and Ian Herrick.
- The wooden base of the walls were bolted to the shake table.
- One side of the corner walls was perpendicular to the direction of motion. The other side was parallel.
- Two 3-axis accelerometers were fixed on to the top of the walls.
- A high-speed camera was also set up to measure displacement of a fiducial point.
- However, memory storage became an issue. The camera could take continuous snapshots for only 1 minute. Our experimental requirement was at least 5 minutes, so we could not use the camera.
- Initial shaking frequency was 1.5 Hz with an incremental increase of 0.5 Hz after every minute until failure.

OBSERVATIONS & RESULTS

Observations:

- Both the regular corners failed at a shaking frequency of 4.0 Hz.
 Failure occurred at the corners.
- The piers were slightly more resistant than regular corners.
 One wall failed at 4.5 Hz. The other at 4 Hz. Failure did NOT occur at the corner.
- Both buttresses failed at 4.0 Hz.
 The wall remained intact as the outer column fell off.

Pier

Buttress

ACCELEROMETER RESULTS

Acceleration vs. Time Plots

ANALYSIS OF TEST RESULTS

Displacement vs. Time Plots

This data needs to be corrected!

Houston, we have a problem!

- The displacement graphs should be sinusoidal, not exponential!
- Problem lies in the use of accelerometers. Very difficult to extract displacement from acceleration.
- The slightest of offsets will make the accelerometer think that the wall is moving continuously in a certain direction instead of oscillating back and forth.

ANALYSIS OF TEST RESULTS

Correction Attempt

- Subtracted the mean displacement from each individual displacement reading.
- Improves the readings slightly, but still no where near predicted results.
- Developing an algorithm to produce an accurate set of displacement data is an Honors thesis project in itself.

THEORETICAL PREDICTION

 Model the side of the wall perpendicular to the direction of motion as a Cantilever beam. Assume the wall parallel to the direction of motion acts as a fixed support.

Slope at free end

Deflection at length, x, away from fixed end

Max. Deflection at free end

- Force = mass x acceleration = 255.0 N; mass = 50 lbs. / 2 = 25 lbs. = 11.34 kg; acceleration = $4\pi^2 f^2 x$ = 22.49 m/s² (Frequency, f = 4.0 Hz; Distance, x = 1.4 inches = 0.0356 m)
- Distributed load, $\omega = \frac{Force}{length} = \frac{255 N}{0.445 m} = 573.0 \frac{N}{m}$
- Young's Modulus, E = 2.0x10⁷ Pa
- Moment of Inertia, $I = \frac{bh^3}{12} = \frac{2.5*9^3}{12} = 151.875 \ inch^4 = 6.3215*10^{-5} \ m^4$
- Maximum deflection, $\delta_{MAX} = \frac{\omega t^4}{8EI} = 2.22 \; mm$

DEVELOPMENT OF CAD MODELS

- SolidWorks: the final frontier! 3D Mechanical CAD modeling software with powerful simulation tools.
- The earth-bags were modeled as rectangular bars with fillets on each edge.
- A custom material was created and applied to the earth-bag extrudes.
- Used cylindrical pins as barbs that fitted into extruded cuts in between each earth-bag row.
- However, SolidWorks detected interferences as a result of the Pattern feature on the cuts.
- If SolidWorks detects any interference, it cannot create a mesh for simulation.
- As an adjustment, I removed the barbs and their respective extruded cuts, and replaced them with rebar.
- Now a very fine mesh was formed, and the finite element analysis (FEA simulation) could run.

SOLIDWORKS SIMULATIONS

Maximum Deflections:

- Regular Corner 2.254 mm Real-life wall - 13.52 mm
- Piers 1.668 mm (26% decrease) Real-life wall - 10.00 mm
- Buttresses 1.520 mm (33% decrease) Real-life wall – 9.12 mm

SolidWorks Simulations and Theoretical Predictions match up very well! (1.5% error)

CONCLUSIONS

- Corner reinforcements increase the wall's resistance to vibration (higher failure frequency and lower max. deflection), and are worth the added investment.
- The SolidWorks models and the cantilever beam model should be accurate predictors of the behavior of earth-bag systems under earthquake conditions.

FUTURE RECOMMENDATIONS

- Larger scale testing to obtain more accurate failure modes of real-life structures.
- Use **Motion Detectors** that measure distance directly in place of accelerometers.
- Reinforce the stub ends of the walls with meshing.
- Ensure earth-bag edges do NOT line up.
- Do such projects as part of a **GROUP!**

ACKNOWLEDGEMENTS

Thank you all!

- Professor Vicki May
- Patti Stouter
- Professor Chris Levey
- Professor Solomon G. Diamond
- Professor Harold Frost
- Professor Erland Schulson
- Dr. Daniel Cullen
- **Kevin Baron**
- Ian Herrick
- **David Connolly**
- Steven Jin

My sincere gratitude to the Porter Family for funding my Dean of Faculty grant for full-time research in Summer 2012.

REFERENCES

- 1. "The \$300 House." Empowering the Poor. Web. 18 Nov. 2012. http://300house.com/>.
- 2. "Earthbag Building." Earthbag Building Index. Web. 18 Nov. 2012. http://earthbagbuilding.com/index.htm.
- 3. Stouter, Patti. "Earthbag Building in the Humid Tropics: Simple Structures." 2nd Edition. http://www.earthbagbuilding2.pdf
- 4. More Patti Stouter publications: http://www.scribd.com/patti stouter/documents>
- 5. Sevim, B. et. al. "Finite element model calibration effects on the earthquake response of masonry arch bridges." Journal of Finite Elements in Analysis and Design. Volume 47, Issues 7, July 2011.
- 6. Stavridis, Andreas, Benson Shing, and Joel Conte. "Design, Scaling, Similitude, and Modeling of Shake-Table Test Structures." Web. 18 Nov. 2012. .
- 7. United Nations Office for the Coordination of Humanitarian Affairs. Emergency Relief Coordinator's Key Messages on Haiti. Issue Number 22, January 12, 2012. http://reliefweb.int/node/470107.
- 8. "Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components." Applied Technology Council. Web. 18 Nov. 2012. http://www.atcouncil.org/pdfs/FEMA461.pdf.
- 9. Daigle, Bryce Callaghan. "Earth-bag Housing: Structural Behavior And Applicability In Developing Countries." 2008. Queen's University.
- http://gspace.library.queensu.ca/bitstream/1974/1421/1/Daigle_Bryce_C_200809_MScEng.pdf
- 10. Cost of Earthbag Houses: http://naturalbuildingblog.com/2009/10/29/cost-of-earthbag-houses/>
- 11. Auroville Earth Institute: http://www.earth-auroville.com/earth_technologies_introduction_en.php
- 12. \$300 House Design Workshop Keynote Address: http://www.youtube.com/watch?v=dZTCKQ-frT0
- 13. Croft, Chris. "Structural Resistance of Earthbag Housing Subject to Horizontal Loading." Thesis. The University of Bath, 2011. Web. http://www.earthbagbuilding.com/pdf/croft.pdf>.

THANK YOU!

Thayer School of Engineering at Dartmouth 14 Engineering Drive Hanover, NH 03755

engineering.dartmouth.edu

Questions? Comments?